Identifying Useful Variables for Vehicle Braking Using the Adjoint Matrix Approach to the Mahalanobis-Taguchi System
Authors
Abstract:
The Mahalanobis Taguchi System (MTS) is a diagnosis and forecasting method for multivariate data. Mahalanobis distance (MD) is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. MTS is of interest because of its reported accuracy in forecasting small, correlated data sets. This is the type of data that is encountered with consumer vehicle ratings. MTS enables a reduction in dimensionality and the ability to develop a scale based on MD values. MTS identifies a set of useful variables from the complete data set with equivalent correlation and considerably less time and data. This paper presents the application of the Adjoint Matrix Approach to MTS for vehicle braking to identify a reduced set of useful variables in multidimensional systems.
similar resources
Applying the Mahalanobis-Taguchi System to Vehicle Ride
The Mahalanobis Taguchi System is a diagnosis and forecasting method for multivariate data. Mahalanobis distance is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. The Mahalanobis Taguchi System is of interest because of its reported accuracy in forecasting small, correlated data sets. Th...
full textthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولModeling A Design System Using the Mahalanobis Taguchi System
This work presents a novel algorithm, the MTS algorithm, which offers the Mahalanobis Taguchi System (MTS) method for parameter selections which are adjusted under a product parameter design. The utility of the algorithm is assessed how individual product parameter dimensions are selected and it can be used to focus on design system (DS) and to identify product architecture dimensions that are ...
full textA Comparison of the Mahalanobis-Taguchi System to A Standard Statistical Method for Defect Detection
The Mahalanobis-Taguchi System is a diagnosis and forecasting method for multivariate data. Mahalanobis distance is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. This paper presents a comparison of the Mahalanobis-Taguchi System and a standard statistical technique for defect detection ...
full textOptimal Feature Selection of Taguchi Character Recognition in the Mahalanobis-Taguchi System using Bees Algorithm
The Mahalanobis-Taguchi System (MTS) is a data mining method employing Mahalanobis distance (MD) and Taguchi′s Robust Engineering philosophy to explore and exploit data in a multidimensional system. The MD calculation provides a measurement scale to discriminate sample data and gives an approach of measuring the level of severity among them. One unique feature of MTS lies its robustness to asse...
full textAntilock Regenerative Braking System Design for a Hybrid Electric Vehicle
Hybrid electric vehicles employ a hydraulic braking system and a regenerative braking system together to provide enhanced braking performance and energy regeneration. In this paper an integrated braking system is proposed for an electric hybrid vehicle that include a hydraulic braking system and a regenerative braking system which is functionally connected to an electric traction motor. In the ...
full textMy Resources
Journal title
volume 1 issue 4
pages 281- 292
publication date 2008-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023